11.1 Latches and Flip-Flops

Reading Assignment: pp. 1013-1019
We can also construct Flip-Flops with MOSFETs!

HO: The Digital Latch
By adding set and reset capabilities to a latch, we form the S / R flip-flop.

HO: The S/R Flip-Flop

The Digital "Latch"

Consider two digital inverters that are "cross coupled":

Note that there are two stable states for this circuit:

W	X	Y	Z	W
0	1	1	0	0
1	0	0	1	1

Thus, the latch will remain in either state until changed by an external input.

\rightarrow A memory device!

We of course can use CMOS inverters to build this latch:

We must add external input in order to change the latch state.
\rightarrow The result will be a Set/Reset Flip Flop!

The S/R Flip-Flop

A Set/Reset Flip-Flop can be constructed by attaching external inputs to a CMOS latch:

Essentially, when S (Set) is high, the latch is set such that Q is high. Likewise, when R (Reset) is high, the latch is set such that Q is low.

Of course, if neither S nor R are high, then the state of the latch remains unchanged. We of course never wish to make both R and S high at the same time (confusion and ambiguity will result!).

The truth table for this circuit is thus that of a Set/Reset Flip Flop:

\section*{| R | S | Q_{n+1} |
| :---: | :---: | :---: |
| 0 | 0 | Q_{n} |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | Not used |}

The value ϕ in the circuit above is an enable line, this must likewise be high if the latch is to change state.

The S/R Flip-Flop is thus a great memory device, storing the value of a single bit (1 or 0). Likewise, we can write to this storage device, setting its value to either 1 or 0 by enabling the S or R inputs, respectively.

